Rishabh Jackpot Zones + Open Line narendra📌 Narendra Jackpot Zones + Open Line — by Narendra
This custom indicator is designed to identify key Support and Resistance Zones based on pivot highs/lows, and highlight the Spot Day Open Price — offering traders clear intraday decision-making references.
🔍 Features:
🔸 Dynamic Support and Resistance Zones from pivot structures
🔸 Customizable Spot Open Line for trend bias identification
🔸 Auto-cleaning of old lines for better chart visibility
🔸 Flexible label sizing to suit your chart aesthetics
⚙️ Inputs:
Spot_Day_Open_Price: Manually input today's spot price
Pivot Lookback: Sensitivity of pivot detection
Zone Line Length: Control horizontal zone visibility
Max Lines: Limit visual clutter by setting maximum zones
Label Size: Choose between Small, Normal, Large, Huge
💼 Use Cases:
Intraday and positional traders for reversal & breakout points
Visual clarity for trend continuation vs rejection
Works across all instruments and timeframes
⚠️ Disclaimer: This is an educational tool. Use it with your trading plan and risk management. Not a buy/sell recommendation.
Göstergeler ve stratejiler
Price Action All In OnePrice Action All In One. Scalping and Day Trading with this PA indicator. Enjoy
Enhanced FVG + BOS & Liquidity Prediction with Alerts### How to use:
1. Add this script to TradingView.
2. Go to the **Alerts** tab.
3. Create new alerts:
- Choose **"Enhanced FVG + BOS & Liquidity Prediction with Alerts"**.
- Select **"Bullish Reversal Alert"** or **"Bearish Reversal Alert"**.
- Set the trigger to **"Once"** or **"Every time"** based on your preference.
### Summary:
- The alerts fire when the combined signals (BOS, Liquidity Sweep, trend, candlestick pattern) strongly suggest a reversal.
- The **labels** and **shapes** give visual confirmation on your chart.
Dynamic Multi-Timeframe Moving Averages Matrix [CdeCripto]This indicator plots up to 10 customizable moving averages (EMA or SMA) from different timeframes on your chart, with optional colored fills and labels. Perfect for traders who want a clear, consolidated view of multiple trend signals at once.
Key Features
Up to 10 MAs: Independently toggle visibility, length, timeframe and type (EMA/SMA) for each moving average.
Multi-Timeframe Support: Fetches data via request.security, letting you overlay higher- or lower-frame MAs on any chart.
Conditional Fills: Optional translucent fills between adjacent MAs to highlight relative strength—green when the faster MA is above, red when below.
Dynamic Labels: On-chart text boxes showing MA length, period and type—fully configurable colour and size for quick reference.
Clean, Lightweight Code: Highly commented and optimized for performance; minimal risk of hitting TradingView’s line/label limits.
Inputs
MA Visibility: Show/hide each of the 10 moving averages.
Length & Type: Set period (e.g. 50, 200) and choose EMA or SMA.
Timeframe: Specify any built-in or custom timeframe (e.g. 1h, 4h, D, W, M).
Colour & Style: Pick distinct colours for each MA; adjust line width and style.
Fill Options: Toggle fills between MA1–MA2, MA2–MA3, … MA9–MA10 and set fill transparency.
Label Options: Turn labels on/off, override label colour, choose font size.
Usage
Scan multiple trend horizons at a glance—ideal for strategies that combine short, medium and long-term moving average signals.
Spot regime changes: when a shorter‐term MA crosses above/below a longer-term MA, the colored fill instantly highlights the shift.
Keep your chart tidy: show only the MAs and fills you need, hide the rest.
How to Add
Copy the Pine Script code into a new indicator in TradingView’s Pine Editor.
Click “Add to Chart.”
Open the settings panel to customize each MA, fills, and labels.
Disclaimer: For educational purposes only. Not financial advice.
MACD + Stochastic Power Scalper Version 9.0MACD Stochastic Scalping for Crypto Futures Pairs. Uses Trailing Stops to lock in profits.
HigherTimeframe Key Levelsthis will show all timeframe previous levels ..... enjoy
thank you Priyank Sir
Psychological Levels by BulltrekHello Traders !
This Indicator specifically designed to mark Major price points in terms of Psychological or blind levels for XAU Pairs
You can edit the price points as per your desire and can also use it on other pairs too.
Psychological levels are very crucial price points while trading where major reversals or entry points can be observed.
This Indicator once activated displays a line on the Psychological levels , in case of reset chart settings , you can also customise the chart size in the settings on the indicator.
This Indicator is developed by Rahul Jain - Founder of Bulltrek Technology
MACD + Stochastic Power Scalper Version 8.0MACD Stochastic Scalping for Crypto Futures Pairs. Uses Trailing Stops to lock in profits.
Advanced Full VSA Analyzer with StrengthThis script provides a full Volume Spread Analysis (VSA) toolkit to detect and label strength and weakness signals on the chart based on candle spread, volume, and close position.
It identifies key VSA patterns such as:
No Demand / No Supply
Upthrust
Stopping Volume
Shakeout
Test (Successful and Failed)
Effort to Rise / Fall
Buying / Selling Climax
Spring, and more...
🔍 Features:
Detects VSA signals with contextual labels (e.g. "Upthrust – Weak", "Effort to Rise – Strong")
Compares current candle volume/spread/close to previous candles
Includes volume moving average & deviation bands
Filters out repeated signals to reduce chart clutter
Fully customizable parameters
Ideal for traders using Wyckoff Method, Smart Money Concepts, or Volume Price Analysis.
hudDisplay_v1Library "hudDisplay_v1"
f_getPosition(loc)
Parameters:
loc (string)
f_getTableSize(layout, itemCount)
Parameters:
layout (string)
itemCount (int)
f_getCellPosition(layout, index)
Parameters:
layout (string)
index (int)
f_drawHUD(show, loc, layout, content, textColor, bgColor)
Parameters:
show (bool)
loc (string)
layout (string)
content (array)
textColor (color)
bgColor (color)
Imbalance Scanner [Afnan]Identify the most aggressive candles on any chart—instantly or historically—and act before the crowd notices.
🔥 What It Does
Four-tier detection system: 🟡 Low → 🟠 Mild → 🔴 Explosive → 💥 Super Explosive
Smart filtering: Detects abnormal candle bodies and ranges that signal market imbalances
Volume confirmation: Optional filter ensures moves are backed by institutional-level activity
Directional control: Choose All, Bullish, or Bearish candles to match your trading bias
Pine Scanner optimized: Scan entire watchlists in real-time or historically.
Clean interface: Minimal emoji labels with background highlighting—no chart clutter
⚡ Quick Setup
1. Load & Configure: Add to chart and open indicator settings
2. Set Detection Level: Choose minimum imbalance strength (Low/Mild/Explosive/Super)
3. Optional Volume Filter: Enable for higher-quality signals with volume confirmation
4. Pine Scanner Setup: Set "Days Back" (0 for live scanning, >0 for historical analysis)
5. Create Alerts: Pre-built alert conditions for each explosive level
🎯 Primary Use Cases
Smart Money Detection: Spot where big players are active through explosive price movements
Market Inefficiencies: Find supply/demand imbalances as they develop
Breakout Confirmation: Validate genuine breakouts using explosive candle analysis
Identify momentum acceleration points for optimal timing
📊 Pine Scanner Ready
Fully compatible with TradingView's Pine Scanner for real-time watchlist monitoring and historical analysis.
💼 Professional Edge
Built by @AfnanTAjuddin for active traders who need reliable, fast imbalance detection across any market or timeframe. Perfect for day trading, swing trading, and institutional activity tracking.
kala//@version=5
indicator("kala", overlay=false)
// === Fixed Parameters
emaLen = 14
amplifier = 100.0
// === Momentum Calculation
ema = ta.ema(close, emaLen)
emaDelta = (ema - ema ) * amplifier // Momentum
// === Price - VWAP Distance
vwap = ta.vwap
vwapDist = (close - vwap) * amplifier // Amplified price-VWAP distance
// === Zero Line
hline(0, "Zero Line", color=color.gray, linestyle=hline.style_dashed)
// === Plots
plot(emaDelta, title="Momentum", color=color.white, linewidth=2)
plot(vwapDist, title="Price", color=color.teal, linewidth=2)
FVGs & CEs Detector - Xcelerate//@version=6
indicator("FVGs & CEs Detector - Xcelerate", overlay=true, max_boxes_count=50, max_lines_count=50)
lookback_days = input.int(7, "Number of days lookback", minval=1, maxval=30)
show_up_fvg = input.bool(true, "'UP' FVGs:")
up_fvg_color = input.color(color.new(color.blue, 80), "", inline="up")
show_down_fvg = input.bool(true, "'DOWN' FVGs:")
down_fvg_color = input.color(color.new(color.orange, 80), "", inline="down")
show_ce = input.bool(true, "Show CE")
ce_color = input.color(color.gray, "color:", inline="ce")
ce_style = input.string("line", "style:", options= , inline="ce")
delete_filled = input.bool(true, "Delete filled boxes & lines")
use_ce = input.bool(true, "Use CE (as opposed to Full Fill)", group="CONDITIONS")
use_bodies = input.bool(false, "Use candle Bodies (as opposed to wicks)", group="CONDITIONS")
body_fill_only = input.bool(true, "Delete only on Body fill (not wick)", group="CONDITIONS")
inputs_status = input.bool(true, "Inputs in status line", group="INPUT VALUES")
var array bull_boxes = array.new()
var array bear_boxes = array.new()
var array bull_ce_lines = array.new()
var array bear_ce_lines = array.new()
var array bull_centers = array.new()
var array bear_centers = array.new()
var array bull_bottoms = array.new()
var array bear_tops = array.new()
// VERIFICĂ TIMEFRAME ȘI PERIOADA PERMISĂ
is_within_allowed_period() =>
candle_time = time
current_time = timenow
// Calculează diferența în ore
hours_diff = (current_time - candle_time) / (1000 * 60 * 60)
// Pentru 1m, 2m, 3m: EXACT 20 ore
if timeframe.isintraday and timeframe.multiplier <= 3
hours_diff <= 20
// Pentru 5m: EXACT 50 ore
else if timeframe.isintraday and timeframe.multiplier == 5
hours_diff <= 50
// Pentru 6m până la 12H: 5 zile = 120 ore
else if timeframe.isintraday and timeframe.multiplier >= 6 and timeframe.multiplier <= 720
hours_diff <= (5 * 24) // 5 zile = 120 ore
else if timeframe.isdaily
hours_diff <= (5 * 24) // 5 zile = 120 ore
else if timeframe.isweekly
hours_diff <= (21 * 24) // 21 zile = 504 ore
else if timeframe.ismonthly
hours_diff <= (90 * 24) // 90 zile = 2160 ore
else
true
h1 = use_bodies ? math.max(open , close ) : high
l1 = use_bodies ? math.min(open , close ) : low
h2 = use_bodies ? math.max(open , close ) : high
l2 = use_bodies ? math.min(open , close ) : low
h3 = use_bodies ? math.max(open, close) : high
l3 = use_bodies ? math.min(open, close) : low
candle_confirmed = barstate.isconfirmed
time_allowed = is_within_allowed_period()
bullish_fvg = candle_confirmed and l3 > h1 and math.min(h2, l2) < l3 and time_allowed
bearish_fvg = candle_confirmed and h3 < l1 and math.max(l2, h2) > h3 and time_allowed
if bullish_fvg and show_up_fvg
gap_top = l3
gap_bottom = h1
gap_center = (gap_top + gap_bottom) / 2
new_box = box.new(bar_index , gap_top, bar_index, gap_bottom,
bgcolor=up_fvg_color,
border_color=color.new(color.blue, 90),
border_width=1)
array.push(bull_boxes, new_box)
array.push(bull_centers, gap_center)
array.push(bull_bottoms, gap_bottom)
if show_ce and ce_style == "line"
ce_line = line.new(bar_index , gap_center, bar_index, gap_center,
color=ce_color,
style=line.style_dashed,
width=1)
array.push(bull_ce_lines, ce_line)
if bearish_fvg and show_down_fvg
gap_top = l1
gap_bottom = h3
gap_center = (gap_top + gap_bottom) / 2
new_box = box.new(bar_index , gap_top, bar_index, gap_bottom,
bgcolor=down_fvg_color,
border_color=color.new(color.orange, 90),
border_width=1)
array.push(bear_boxes, new_box)
array.push(bear_centers, gap_center)
array.push(bear_tops, gap_top)
if show_ce and ce_style == "line"
ce_line = line.new(bar_index , gap_center, bar_index, gap_center,
color=ce_color,
style=line.style_dashed,
width=1)
array.push(bear_ce_lines, ce_line)
if barstate.islast
bull_size = array.size(bull_boxes)
if bull_size > 0
for i = 0 to bull_size - 1
current_box = array.get(bull_boxes, i)
box.set_right(current_box, bar_index)
bear_size = array.size(bear_boxes)
if bear_size > 0
for i = 0 to bear_size - 1
current_box = array.get(bear_boxes, i)
box.set_right(current_box, bar_index)
bull_ce_size = array.size(bull_ce_lines)
if bull_ce_size > 0
for i = 0 to bull_ce_size - 1
current_line = array.get(bull_ce_lines, i)
line.set_x2(current_line, bar_index)
bear_ce_size = array.size(bear_ce_lines)
if bear_ce_size > 0
for i = 0 to bear_ce_size - 1
current_line = array.get(bear_ce_lines, i)
line.set_x2(current_line, bar_index)
if delete_filled
if array.size(bull_boxes) > 0
for i = array.size(bull_boxes) - 1 to 0
filled = false
if use_ce
center_level = array.get(bull_centers, i)
if body_fill_only
filled := math.min(open, close) <= center_level
else
filled := low <= center_level
else
bottom_level = array.get(bull_bottoms, i)
if body_fill_only
filled := math.min(open, close) <= bottom_level
else
filled := low <= bottom_level
if filled
box.delete(array.get(bull_boxes, i))
array.remove(bull_boxes, i)
array.remove(bull_centers, i)
array.remove(bull_bottoms, i)
if i < array.size(bull_ce_lines)
line.delete(array.get(bull_ce_lines, i))
array.remove(bull_ce_lines, i)
if array.size(bear_boxes) > 0
for i = array.size(bear_boxes) - 1 to 0
filled = false
if use_ce
center_level = array.get(bear_centers, i)
if body_fill_only
filled := math.max(open, close) >= center_level
else
filled := high >= center_level
else
top_level = array.get(bear_tops, i)
if body_fill_only
filled := math.max(open, close) >= top_level
else
filled := high >= top_level
if filled
box.delete(array.get(bear_boxes, i))
array.remove(bear_boxes, i)
array.remove(bear_centers, i)
array.remove(bear_tops, i)
if i < array.size(bear_ce_lines)
line.delete(array.get(bear_ce_lines, i))
array.remove(bear_ce_lines, i)
plot_ce_up = bullish_fvg and show_up_fvg and show_ce and ce_style == "dot" ? (l3 + h1) / 2 : na
plot_ce_down = bearish_fvg and show_down_fvg and show_ce and ce_style == "dot" ? (l1 + h3) / 2 : na
plot(plot_ce_up, style=plot.style_circles, color=ce_color, linewidth=2, title="CE UP")
plot(plot_ce_down, style=plot.style_circles, color=ce_color, linewidth=2, title="CE DOWN")
OTT Live P&L Tracker🔹 OTT Live P&L Tracker 🔹
📈 Real-Time Paper Trading Tracker | Perfect for Beginners & Strategy Testing
This indicator is designed for *paper traders* and *beginners* to simulate trades, monitor live Profit & Loss, and understand entry-based performance without executing real trades. Just enter your planned *buy price, **target, and **stop loss* — and watch the P&L update live on your chart!
---
✅ FEATURES:
• Manual Buy Price Input
• Real-Time P&L Calculation
• Visual Target 🎯 and Stop Loss ❌ Levels
• Auto-updating P&L Label with Color Change
• Ideal for strategy learners and educators
• Great tool for practicing trading discipline
---
📌 How to Use:
1. Input your *Buy Price* manually.
2. Set your *Target* and *Stop Loss* (in points).
3. The indicator will plot the entry line, SL & Target, and start tracking P&L in real time.
---
⚠ Note: This is NOT a buy/sell signal script. It's for tracking your own strategies with live market movement.
---
📺 Watch the Explanation on YouTube:
👉
📢 Join Our Telegram Community for Live Market Ideas:
👉
---
💬 Created by: *OPTION TAMIL TRADER*
🔗 Follow for more real-world trading tools, especially focused on *Options Trading Education in Tamil*.
Happy Trading! 📊
📺 Watch the Explanation on YouTube:
👉 youtube.com
📢 Join Our Telegram Community:
👉 t.me
AurumFx ATR with EMAThis strategy combines the strength of breakout momentum with trend confirmation for precision entries. It uses a 9-period EMA to define short-term trend bias, while identifying key breakout points using 20-bar highs and lows. Long trades trigger on bullish breakouts above the previous high when price is above the EMA, while shorts trigger on bearish breakdowns below the prior low when price is below the EMA. Designed for traders seeking a simple yet effective trend-following system with clear visual signals and dynamic market adaptation.
TrailingStopLibraryLibrary "TrailingStopLibrary"
专业移动止盈库 - 为Pine Script策略提供完整的追踪止盈功能。支持做多做空双向交易,基于风险回报比智能激活,提供收盘价和高低价两种判断模式。包含完整的状态管理、调试信息和易用的API接口。适用于股票、外汇、加密货币等各种市场的风险管理。
@version 1.0
@author runto2006
new_config(enabled, activation_ratio, pullback_percent, price_type)
创建移动止盈配置对象
Parameters:
enabled (bool) : (bool) 是否启用移动止盈,默认true
activation_ratio (float) : (float) 激活盈亏比,默认4.0,表示盈利4倍止损距离时激活
pullback_percent (float) : (float) 回撤百分比,默认1.0,表示回撤1%时触发止盈
price_type (string) : (string) 价格类型,默认"close"。"close"=收盘价模式,"hl"=高低价模式
Returns: Config 配置对象
new_state()
创建移动止盈状态对象
Returns: State 初始化的状态对象
reset(state)
重置移动止盈状态
Parameters:
state (State) : (State) 要重置的状态对象
Returns: void
calc_activation_target(entry_price, stop_price, activation_ratio, is_long)
计算激活目标价格
Parameters:
entry_price (float) : (float) 入场价格
stop_price (float) : (float) 止损价格
activation_ratio (float) : (float) 激活盈亏比
is_long (bool) : (bool) 是否为多头持仓
Returns: float 激活目标价格,如果输入无效则返回na
get_check_price(price_type, is_long, for_activation)
获取用于判断的价格
Parameters:
price_type (string) : (string) 价格类型:"close"或"hl"
is_long (bool) : (bool) 是否为多头持仓
for_activation (bool) : (bool) 是否用于激活判断,影响高低价的选择方向
Returns: float 当前判断价格
check_activation(config, state, entry_price, stop_price, is_long, has_position)
检查是否应该激活移动止盈
Parameters:
config (Config) : (Config) 移动止盈配置
state (State) : (State) 移动止盈状态
entry_price (float) : (float) 入场价格
stop_price (float) : (float) 止损价格
is_long (bool) : (bool) 是否为多头持仓
has_position (bool) : (bool) 是否有持仓
Returns: bool 是否成功激活
update_tracking(config, state, is_long)
更新移动止盈的追踪价格
Parameters:
config (Config) : (Config) 移动止盈配置
state (State) : (State) 移动止盈状态
is_long (bool) : (bool) 是否为多头持仓
Returns: void
check_trigger(config, state, entry_price, is_long)
检查是否触发移动止盈
Parameters:
config (Config) : (Config) 移动止盈配置
state (State) : (State) 移动止盈状态
entry_price (float) : (float) 入场价格
is_long (bool) : (bool) 是否为多头持仓
Returns: bool 是否触发止盈
process(config, state, entry_price, stop_price, is_long, has_position)
一体化处理移动止盈逻辑
Parameters:
config (Config) : (Config) 移动止盈配置
state (State) : (State) 移动止盈状态
entry_price (float) : (float) 入场价格
stop_price (float) : (float) 止损价格
is_long (bool) : (bool) 是否为多头持仓
has_position (bool) : (bool) 是否有持仓
Returns: bool 是否触发止盈
get_trigger_price(config, state, is_long)
获取当前触发价格
Parameters:
config (Config) : (Config) 移动止盈配置
state (State) : (State) 移动止盈状态
is_long (bool) : (bool) 是否为多头持仓
Returns: float 触发价格,未激活时返回na
get_pullback_percent(config, state, entry_price, is_long)
计算当前回撤百分比
Parameters:
config (Config) : (Config) 移动止盈配置
state (State) : (State) 移动止盈状态
entry_price (float) : (float) 入场价格
is_long (bool) : (bool) 是否为多头持仓
Returns: float 当前回撤百分比,未激活时返回na
get_status_info(config, state, entry_price, is_long)
获取状态信息字符串(用于调试)
Parameters:
config (Config) : (Config) 移动止盈配置
state (State) : (State) 移动止盈状态
entry_price (float) : (float) 入场价格
is_long (bool) : (bool) 是否为多头持仓
Returns: string 详细的状态信息
Config
移动止盈配置对象
Fields:
enabled (series bool) : (bool) 是否启用移动止盈功能
activation_ratio (series float) : (float) 激活盈亏比 - 盈利达到止损距离的多少倍时激活追踪
pullback_percent (series float) : (float) 回撤百分比 - 从最优价格回撤多少百分比时触发止盈
price_type (series string) : (string) 价格判断类型 - "close"使用收盘价,"hl"使用高低价
State
移动止盈状态对象
Fields:
activated (series bool) : (bool) 是否已激活追踪止盈
highest_price (series float) : (float) 激活后记录的最高价格
lowest_price (series float) : (float) 激活后记录的最低价格
activation_target (series float) : (float) 激活目标价格
成交量分布与行为分析(VP)# 📊 成交量分布与价格行为分析指标使用说明
## 🌟 指标概述
**成交量分布与价格行为分析**是一个专业的TradingView指标,结合了传统的成交量分布分析(Volume Profile)和现代价格行为技术,为交易者提供全面的市场分析工具。
### ✨ 核心功能
- 📈 **成交量分布分析** - 显示特定价格区间的成交量集中度
- 🎯 **价格行为识别** - 智能识别关键价格水平和市场行为
- 📊 **情绪分布分析** - 展示买卖双方在不同价格的力量对比
- 🔄 **支撑阻力转换** - 自动检测支撑阻力的转换
- 📋 **专业统计信息** - 提供详细的市场数据统计
---
## 🛠️ 功能模块详解
### 1. 📊 成交量与情绪分布
#### 成交量分布
- **用途**: 显示在特定价格水平的成交量密度
- **解读**:
- 🟢 **绿色条形** = 上涨成交量(买盘主导)
- 🔴 **红色条形** = 下跌成交量(卖盘主导)
- 📏 **条形长度** = 成交量大小
#### 价值区域 (Value Area)
- **💎 价值区域上涨/下跌**: 68%成交量集中的区域
- **📈 VAH (Value Area High)**: 价值区域上边界
- **📉 VAL (Value Area Low)**: 价值区域下边界
- **🎯 POC (Point of Control)**: 成交量最大的价格水平
#### 情绪分布
- **🐂 看涨情绪**: 买盘力量占优势的价格区域
- **🐻 看跌情绪**: 卖盘力量占优势的价格区域
#### 供需区域
- **🔻 供应区域**: 卖压集中的低成交量区域
- **🔺 需求区域**: 买盘集中的低成交量区域
### 2. 🎯 价格行为分析
#### 关键价格提醒
- **🎯 POC附近**: 价格接近控制点时显示橙色圆点
- **⚡ VAH测试**: 价格测试价值区域高点时显示红色三角
- **🔥 VAL测试**: 价格测试价值区域低点时显示绿色三角
#### 成交量突破信号
- **🚀 突破确认**: 成交量异常放大时K线边框高亮
- **颜色含义**:
- 🟢 **绿色边框** = 上涨突破
- 🔴 **红色边框** = 下跌突破
#### 支撑阻力转换
- **🔄 阻力转支撑**: 突破VAH后显示蓝色虚线
- **🔄 支撑转阻力**: 跌破VAL后显示紫色虚线
### 3. 📊 成交量直方图
- **📈 绿色柱状**: 上涨K线的成交量
- **📉 红色柱状**: 下跌K线的成交量
- **📊 黄色线条**: 成交量移动平均线
- **🔄 翻转方向**: 可选择向上或向下显示
- **📍 位置控制**: 可放置在K线图上方或下方
---
## ⚙️ 参数设置指南
### 📊 成交量与情绪分布
| 参数 | 说明 | 推荐设置 |
|------|------|----------|
| **成交量分布** | 启用/禁用主要功能 | ✅ 开启 |
| **情绪分布** | 显示买卖情绪对比 | ✅ 开启 |
| **供需区域** | 显示供需失衡区域 | ✅ 开启 |
| **价值区域 (%)** | 成交量集中度 | 68% (默认) |
| **分布行数** | 价格精度 | 100行 |
| **分布宽度** | 显示宽度 | 31% |
| **回看长度** | 分析K线数量 | 360根 |
### 🎯 价格行为分析
| 参数 | 说明 | 建议设置 |
|------|------|----------|
| **关键价格提醒** | POC/VAH/VAL提醒 | ✅ 开启 |
| **POC敏感度** | POC提醒敏感度 | 0.2% |
| **VAH/VAL敏感度** | 边界测试敏感度 | 0.3% |
| **成交量突破信号** | 大成交量提醒 | ✅ 开启 |
| **成交量突破倍数** | 突破判定倍数 | 1.5倍 |
| **支撑阻力转换** | S/R转换线条 | ✅ 开启 |
| **显示风格** | 视觉强度 | 标准 |
### 📊 成交量直方图
| 参数 | 说明 | 建议 |
|------|------|------|
| **成交量直方图** | 启用直方图 | ✅ 开启 |
| **成交量MA** | 移动平均线 | ✅ 开启,21周期 |
| **位置** | 显示位置 | 顶部 |
| **翻转方向** | 方向控制 | ❌ 关闭 |
| **高度** | 显示高度 | 默认 |
| **垂直偏移** | 位置微调 | 1 |
---
## 📈 实战交易策略
### 🎯 策略一:POC回归交易
**设置要求**:
- ✅ 开启价格行为分析
- 🎯 POC敏感度: 0.2%
- 📊 成交量突破: 1.5倍
**交易信号**:
1. **🎯 橙色圆点出现** → 价格接近POC
2. **📊 成交量确认** → 等待成交量放大
3. **🚀 突破信号** → K线边框高亮时入场
**风险管理**:
- 止损:VAH/VAL边界
- 止盈:对侧价值区域边界
### 🔄 策略二:支撑阻力转换
**设置要求**:
- ✅ 开启支撑阻力转换
- 📏 线条长度: 5-10根K线
- ⚡ VAH/VAL敏感度: 0.3%
**交易信号**:
1. **🔵 蓝色虚线** → 阻力转支撑,看涨
2. **🟣 紫色虚线** → 支撑转阻力,看跌
3. **📊 成交量确认** → 配合大成交量
**适用市场**:
- 趋势行情
- 突破行情
- 区间震荡末期
### 📊 策略三:价值区域交易
**设置要求**:
- 💎 价值区域: 68%
- 📊 分布统计: 开启
- 🎨 显示风格: 标准
**交易逻辑**:
1. **价值区域内** → 区间交易策略
2. **价值区域上方** → 强势追多
3. **价值区域下方** → 弱势做空
4. **VAH/VAL测试** → 反弹/回调机会
---
## 🎨 显示风格选择
### 🔍 简约风格
- **适用**: 经验丰富的交易者
- **特点**: 提示非常低调,不影响图表阅读
- **推荐**: 专业交易员
### 📊 标准风格
- **适用**: 大多数交易者
- **特点**: 平衡的视觉效果,信息清晰
- **推荐**: 日常交易使用
### 🎯 醒目风格
- **适用**: 学习阶段的交易者
- **特点**: 信号明显,容易识别
- **推荐**: 新手交易者
---
## 🚨 警报设置
### 自动警报功能
- **🎯 POC穿越警报**: 价格突破控制点
- **📈 VAH突破警报**: 价格突破价值区域高点
- **📉 VAL突破警报**: 价格跌破价值区域低点
- **📊 高成交量警报**: 检测到异常成交量
- **🚀 成交量突破警报**: 确认突破信号
### 警报设置建议
1. 启用**POC穿越警报**用于关键点位提醒
2. 启用**成交量突破警报**用于入场确认
3. 根据交易风格选择性启用其他警报
---
## 📋 统计信息解读
### 右上角统计表格
| 项目 | 含义 | 用途 |
|------|------|------|
| **控制点** | 成交量最大的价格 | 关键支撑/阻力位 |
| **价值区域高点/低点** | 68%成交量边界 | 正常波动范围 |
| **总成交量** | 分析期间总成交量 | 市场活跃度 |
| **平均成交量/K线** | 平均K线成交量 | 成交量基准 |
| **价格行为** | 当前市场状态 | 实时分析结果 |
### 价格行为状态说明
| 状态 | 含义 | 操作建议 |
|------|------|----------|
| **🚀突破** | 成交量突破中 | 考虑追涨/追跌 |
| **🎯POC** | 接近控制点 | 关注反转机会 |
| **⚡VAH** | 测试价值区域高点 | 观察突破/回落 |
| **🔥VAL** | 测试价值区域低点 | 观察反弹/破位 |
| **↗上方** | 价值区域上方 | 强势市场 |
| **↘下方** | 价值区域下方 | 弱势市场 |
| **📊区域内** | 价值区域内 | 区间震荡 |
---
## 💡 使用技巧
### ✅ 最佳实践
1. **📊 多时间框架分析**:
- 高时间框架确定趋势
- 低时间框架寻找入场点
2. **🎯 关键水平确认**:
- POC作为主要支撑/阻力
- VAH/VAL作为次要关键位
3. **📈 成交量确认**:
- 突破必须配合成交量放大
- 低成交量突破谨慎对待
4. **🔄 动态调整**:
- 根据市场环境调整敏感度
- 趋势市场降低敏感度
- 震荡市场提高敏感度
### ❌ 常见误区
1. **过度依赖单一信号**: 需要多重确认
2. **忽略大趋势**: VP分析要结合趋势方向
3. **频繁调整参数**: 保持参数稳定性
4. **忽略风险管理**: 设置合理止损
---
## 🔧 故障排除
### 常见问题
**Q: 价格行为提示不显示?**
A: 检查以下设置:
- ✅ 确认"启用价格行为分析"已开启
- 🎨 调整"显示风格"为"醒目"
- 📊 降低敏感度设置
**Q: 成交量分布显示不完整?**
A: 调整以下参数:
- 📏 增加"回看长度"
- 📊 调整"分布行数"
- 📈 检查数据源
**Q: 警报过于频繁?**
A: 优化警报设置:
- 🎯 提高敏感度阈值
- 📊 增加成交量突破倍数
- ⏰ 选择关键警报类型
---
## 📞 技术支持
如有其他问题,请参考TradingView帮助文档或联系技术支持团队。
---
*💡 提示:该指标最适合用于股票、外汇、加密货币等具有充足成交量的市场。建议在使用前先在模拟环境中熟悉各项功能。*
# Volume Profile & Price Action Analysis Indicator
## Overview
This is a comprehensive **Volume Profile (VP)** indicator with advanced **Price Action Analysis** features, designed for professional trading on TradingView. It combines traditional volume profile analysis with sophisticated price behavior detection to provide traders with deeper market insights.
## 🎯 Key Features
### 📊 Volume Profile Analysis
- **Volume Distribution**: Visual representation of trading activity at different price levels
- **Point of Control (POC)**: Identifies the price level with highest volume
- **Value Area**: Highlights the price range containing 68% (customizable) of total volume
- **Sentiment Profile**: Shows bullish vs bearish sentiment at each price level
- **Supply & Demand Zones**: Identifies low-volume areas indicating potential breakout zones
### 🎯 Advanced Price Action Analysis
- **Key Price Level Alerts**: Smart detection when price approaches critical levels
- **Volume Breakout Signals**: Identifies significant volume spikes with visual confirmation
- **Support/Resistance Conversion**: Tracks when key levels flip their role
- **Real-time Price Behavior Status**: Live updates in statistics table
### 📈 Volume Histogram
- **Enhanced Volume Bars**: Visual volume representation with customizable placement
- **Volume Moving Average**: Overlay MA on volume for trend analysis
- **Flip Direction**: Option to invert histogram direction
- **Adjustable Height & Offset**: Full customization of visual appearance
## 🛠️ Configuration Guide
### Volume Profile Settings
| Parameter | Description | Default | Range |
|-----------|-------------|---------|--------|
| **Volume Profile** | Enable/disable main volume profile | ✓ Enabled | - |
| **Up Volume Color** | Color for bullish volume bars | Gray-Blue | Custom |
| **Down Volume Color** | Color for bearish volume bars | Gray | Custom |
| **Value Area %** | Percentage of volume for value area | 68% | 0-100% |
| **Profile Rows** | Resolution of volume profile | 100 | 10-150 |
| **Profile Width** | Width of volume profile bars | 31% | 0-250% |
### Price Action Analysis Settings
| Parameter | Description | Default | Range |
|-----------|-------------|---------|--------|
| **Enable Price Action** | Master switch for price analysis | ✓ Enabled | - |
| **Key Price Alerts** | POC/VAH/VAL proximity detection | ✓ Enabled | - |
| **POC Sensitivity** | Distance threshold for POC alerts | 0.2% | 0.1-1.0% |
| **VAH/VAL Sensitivity** | Distance threshold for value area alerts | 0.3% | 0.1-1.0% |
| **Volume Breakout Signals** | Large volume detection | ✓ Enabled | - |
| **Volume Threshold** | Multiplier for breakout detection | 1.5x | 1.2-3.0x |
| **Display Style** | Visual intensity of signals | Standard | Simple/Standard/Bold |
### Volume Histogram Settings
| Parameter | Description | Default | Range |
|-----------|-------------|---------|--------|
| **Volume Histogram** | Enable volume bars | ✓ Enabled | - |
| **Placement** | Position relative to price | Top | Top/Bottom |
| **Flip Direction** | Invert histogram direction | ✗ Disabled | - |
| **Height** | Size of volume bars | 8/10 | 1-10 |
| **Vertical Offset** | Position adjustment | 1 | -20 to 20 |
## 📋 How to Use
### 1. Basic Setup
1. Add the indicator to your chart
2. Adjust the **Lookback Length** (default: 360 bars) for your analysis period
3. Set **Profile Placement** (Right or Left side)
4. Configure colors to match your chart theme
### 2. Volume Profile Analysis
- **High Volume Areas** (thick bars) = Consolidation/Value zones
- **Low Volume Areas** (thin bars) = Potential breakout zones
- **POC Line** (red) = Strongest support/resistance level
- **Value Area** (highlighted) = Fair value trading range
### 3. Price Action Signals
#### Visual Indicators
- **🟡 Small Dots** = Price near POC (potential reversal zone)
- **🔺 Red Triangle** = Price testing Value Area High
- **🔻 Green Triangle** = Price testing Value Area Low
- **📊 Highlighted Candles** = Volume breakout confirmation
- **--- Dashed Lines** = Support/Resistance conversion
#### Statistics Table
Monitor real-time price behavior status:
- **🚀 Breakout** = Volume surge detected
- **🎯 POC** = Price near Point of Control
- **⚡ VAH** = Testing Value Area High
- **🔥 VAL** = Testing Value Area Low
- **↗ Above** = Price above value area
- **↘ Below** = Price below value area
### 4. Trading Applications
#### Entry Signals
- **Volume Breakout** + **POC Touch** = High probability setup
- **VAH/VAL Test** + **Volume Confirmation** = Reversal opportunity
- **Supply/Demand Zone** + **Price Action** = Breakout trade
#### Risk Management
- Use **Value Area** boundaries as dynamic support/resistance
- **POC** often acts as strong magnetic level
- **Low Volume Zones** may indicate stop-loss placement areas
#### Trend Analysis
- **Price Above Value Area** = Bullish bias
- **Price Below Value Area** = Bearish bias
- **Price Within Value Area** = Consolidation/ranging market
## ⚠️ Important Notes
### Performance Optimization
- Indicator processes multiple timeframes automatically
- **Data Source** shown in stats table (1S/5S/1min/5min etc.)
- Adjust **Profile Rows** if performance issues occur
### Best Practices
1. **Combine with Price Action**: Don't rely solely on volume profile
2. **Adjust Sensitivity**: Fine-tune alert thresholds for your timeframe
3. **Monitor Statistics**: Keep an eye on the real-time status table
4. **Use Multiple Timeframes**: Confirm signals across timeframes
### Alerts Setup
The indicator includes built-in alerts for:
- POC crossovers
- Value Area High/Low breaks
- Volume spike detection
- Significant volume increases
## 🎨 Customization Tips
### Professional Look
- Set **Display Style** to "Simple" for clean charts
- Use **muted colors** for volume profile
- Enable **Value Area Background** for clear visualization
### Active Trading
- Set **Display Style** to "Bold" for clear signals
- Lower **sensitivity thresholds** for more frequent alerts
- Enable **Volume Histogram** for quick volume assessment
### Multi-Timeframe Analysis
- Use **Visible Range** for dynamic analysis
- Adjust **Lookback Length** based on your trading style
- Monitor **Data Source** to understand calculation basis
## 📊 Understanding the Output
### Volume Profile Interpretation
- **Wide profiles** = Consolidation periods
- **Narrow profiles** = Trending periods
- **Split profiles** = Double distribution (support/resistance)
### Price Action Signals
- **Cluster of signals** = High probability zone
- **Isolated signals** = Lower confidence
- **Signal + Volume** = Highest probability setups
---
**Disclaimer**: This indicator is for educational purposes. Always perform your own analysis and risk management before making trading decisions.
HTF Trend Table + Recommendation AurumFxHTF Trend Table + Recommendation by AurumFx
This powerful multi-timeframe trend indicator provides a concise visual summary of market direction across key timeframes: 5m, 15m, 1H, 4H, and 1D. By analyzing each timeframe's position relative to the 50 EMA, the script classifies the trend as Bullish, Bearish, or Neutral. It then aggregates the trend signals and delivers a smart trading bias—prioritize LONGS, SHORTS, or stay NEUTRAL—based on trend alignment. Designed for traders who want a clear, quick, and data-driven directional edge.
Smart Price Divergence (MACD Filter) + EMA📌 Purpose
This indicator detects Price Divergences with MACD filtered by a 200 EMA trend condition.
It helps identify high-probability reversal zones aligned with market trend context.
🧠 How It Works
1. MACD Divergence Logic
Bearish Divergence:
Price makes a higher high.
MACD makes a lower high.
Price is above EMA (indicating possible exhaustion in bullish trend).
Bullish Divergence:
Price makes a lower low.
MACD makes a higher low.
Price is below EMA (indicating possible exhaustion in bearish trend).
2. EMA Trend Filter
EMA(200) is used as a directional filter:
Bearish divergences considered above EMA (extended bullish conditions).
Bullish divergences considered below EMA (extended bearish conditions).
3. Visual & Alerts
EMA(200) plotted on chart in orange.
Red triangles for Bearish Divergence.
Green triangles for Bullish Divergence.
Alerts fire for both divergence types.
📈 How to Use
Look for divergence signals as potential reversal alerts.
Combine with support/resistance or price action for confirmation.
EMA ensures signals occur in extended zones, increasing reliability.
Recommended Timeframes: 1h, 4h, D.
Markets: Forex, Crypto, Stocks.
⚙️ Inputs
MACD Fast / Slow / Signal Length
EMA Length (default 200)
⚠️ Disclaimer
This script is for educational purposes only. It does not constitute financial advice.
Always test thoroughly before live trading.
DK-360dThis script print the 10-20 and 50dma band. I would enhance it further with the urgency area. So publishing the first version with minimal needs of mine.
PrismNorm (Rolling)# PrismNorm (Rolling)
Overview
PrismNorm (Rolling) frames four series — VWMA, TWMA, TrueWMA, and a half-price line — over a fixed lookback window, with all series scaled by a chosen volatility measure. Each bar shows how far price has strayed from its rolling anchor, expressed in StdDev, MAD, ATR-scaled, or fixed-percent units.
How It Works
• Compute rolling Weighted Moving Averages over the last lookback bars:
— VWMA: volume-weighted HLC3
— TWMA: simple average of OHLC midpoint
— TrueWMA: TrueRange-weighted TrueMid average
• Anchor each series to its value lookback bars ago (first bar in window). The half-price series uses either close or an SMA lagged by half the window.
• Calculate a volatility measure over volWindowLen = lookback × normMult bars:
— Std Dev of close
— MAD of close
— ATR averaged and scaled to approximate σ
— A fixed percent of the window’s anchor value
• Band width = volatility (or percent of anchor). Normalized output = (net move) ÷ (band width)
Inputs
Settings / Description
• Lookback Period (bars) / Bars used for rolling WMAs and as the anchor lookback
• Deviation Measure / Volatility method: Std Dev, MAD, ATR (scaled), or Percent
• Normalization Span (×Lookback) / Multiplier (1–10) to expand lookback into volatility window
• Percent Deviation (%) / When Percent mode is on, band width = this % of the anchor WMA (or price)
• Scale MAD to σ / Scale Mad by √(π/2) so it aligns with σ under Normal distribution
• Use MA Anchor for Price (½×) / Off: anchor = close ; On: anchor = SMA(close, lookback) shifted by half the lookback
Display
• Show Normalized VWMA
• Show Normalized TWMA
• Show Normalized TrueWMA
• Show Normalized Price (½×)
Tips & Use Cases
• Percent mode yields fixed-width bands, handy for identifying structural shifts without volatility scaling.
• Toggling the MA anchor smooths the reference point, reducing noise in price normalization.
References:
1. TrueWMA Description
## 1. TrueWMA: Volatility-Weighted Price Averaging
What Is TrueWMA?
TrueWMA weights each bar’s TrueMid (TrueRange midpoint) by its TrueRange, so high-volatility bars carry more influence. It blends price level and volatility into one moving average.
In short, it’s a *TrueRange-weighted TrueMid average*.
Pseudocode
// TWMA Example for Comparison
window_size = 50
OHLC = (Open + High + Low + Close) / 4
TWMA = MA(OHLC, window_size)
// VWMA Example for Comparison
window_size = 50
HLC3 = (High + Low + Close) / 3
VWMA = Sum(HLC3 * Volume, window_size) / Sum(Volume, window_size)
// TrueWMA (Rolling)
window_size = 50
max_val = Maximum(Close , High) // TrueRange High
min_val = Minimum(Close , Low) // TrueRange Low
true_mid = (max_val + min_val) / 2 // TrueMid
TrueWMA = Sum(true_mid * TrueRange, window_size) / Sum(TrueRange, window_size)
Interpretation
For each bar, Rolling TrueWMA:
• Computes a TrueMid (“contextual midpoint”) from the prior close and the current bar’s high/low.
• Weights each TrueMid by that bar’s TrueRange.
• Divides the sum of those weighted midpoints by the total TrueRange over the lookback window.
The result is a single series that dynamically blends price levels with recent volatility.
Intraday Strategy: 9EMA-21EMA + VWAP + RSIIntraday 15 m Time fram strategy, helpful in identifying the stocks as well as indices in Indian Market for Long and Short Trades.
PrismNorm (Anchored)# PrismNorm (Anchored)
Overview
PrismNorm plots anchored, span-normalized price averages (VWAP, TWAP, TrueWAP) alongside a half-price line, with all series scaled by a blended volatility measure. This frames price swings across anchor periods of varying lengths in units of recent volatility.
How It Works
On each new anchor span (session, week, month, etc.), the script:
• Resets an anchor line to the first bar’s open.
• Computes raw VWAP, TWAP, TrueWAP and a half-price delta (close–anchor)/2 cumulatively over the span.
• Calculates a deviation metric (Std Dev, MAD, ATR-scaled, or Percent of anchor price) for the current span.
• Blends the current span’s deviation with up to N prior spans (for non-Percent modes).
• Divides each net price series by the blended deviation to yield normalized outputs.
Inputs
Settings / Description
• Anchor Period / Span for resetting the anchor line (Week, Month, etc.)
• Deviation Measure / Volatility method for normalization: Std Dev, MAD, ATR (scaled), or Percent
• Normalization Interval / Number of past spans (current+1 … current+10) to include in blended deviation
• Percent Deviation (%) / Band width % when Percent mode is selected (applied to anchor price)
• Scale MAD to σ / Scale MAD by √(π/2) so it aligns with σ under Normal distribution
Display
• Show Normalized VWAP
• Show Normalized TWAP
• Show Normalized TrueWAP
• Show Normalized Price (½×)
Tips & Use Cases
• Use shorter anchor spans (Session, Week) for intraday normalization.
• Use longer spans (Quarter, Year) to compare price action across macro periods.
References:
1. TrueWAP Description
2. SD, MAD, ATR (scaled) Deviation Measure Methodology
## 1. TrueWAP: Volatility-Weighted Price Averaging
What Is TrueWAP?
TrueWAP plugs actual price fluctuations into your average. Instead of only tracking time (TWAP) or volume (VWAP), it weights each bar’s TrueMid (TrueRange midpoint) by its TrueRange—so when the market moves more, that bar counts more.
In short, it’s a *TrueRange-weighted TrueMid average* anchored at your start date.
TrueWAP (Anchored) Overview
• On the first bar, it uses the simple high-low midpoint for price and the bar’s high-low range for weighting.
• From the next bar onward, it computes TrueMid (TrueRange midpoint).
• Each TrueMid is weighted by its TrueRange and cumulatively summed from the anchor point.
Pseudocode
// TWAP Example for Comparison
current_days = BarsSince("start_of_period")
OHLC = (Open + High + Low + Close) / 4
TWAP = MA(OHLC, current_days)
// VWAP Example for Comparison
current_days = BarsSince("start_of_period")
HLC3 = (High + Low + Close) / 3
VWAP = Sum(HLC3 * Volume, current_days) / Sum(Volume, current_days)
// TrueWAP (Anchored)
current_days = BarsSince("start_of_period") // Count of bars since the period began
first_bar = (current_days == 0) // Boolean flag if current bar is 1st of period
hilo_mid = (High + Low) / 2
max_val = max(Close , High)
min_val = min(Close , Low)
true_mid = (max_val + min_val) / 2
// Use hilo_mid and (High - Low) for the first bar; otherwise, use true_mid and True Range
mid_val = IF(first_bar, hilo_mid, true_mid)
range_val = IF(first_bar, (High - Low), TrueRange)
TrueWAP = Sum(mid_val * range_val, current_days) / Sum(range_val, current_days)
Recap: Interpretation
• The first bar uses the simple high-low midpoint and range.
• Subsequent bars use TrueMid and TrueRange based on prior close.
• This ensures the average reflects only the observed volatility and price since the anchor.
A Note on True Range
TrueRange captures the full extent of bar-to-bar volatility as the maximum of:
• High – Low
• |High – Previous Close|
• |Low – Previous Close|
## 2. SD, MAD, ATR (scaled) Deviation Measure Methodology: Segmented Weighted-Average Volatility
### Introduction
Conventional standard deviation calculations aggregate data over an expanding window and rely on a single mean, producing one summary statistic. This can obscure segmented, sequential datasets—such as MTD, QTD, and YTD—where additional granularity and time-sensitive insights matter.
This methodology isolates standard deviation within defined time frames and then proportionally allocates them based on custom lookback criteria. The result is a dynamic, multi-period normalization benchmark that captures both emerging volatility and historical stability.
Note: While this example uses SD, the same fixed-point approach applies to MAD and ATR (scaled).
### 2.1 Standard Deviation (Rolling Window)
pseudocode
// -- STANDARD DEVIATION (ROLLING) Calculation --
window_size = 20
rolling_SD = STDDEV(Close, window_size)
• Ideal for immediate trading insights.
• Reflects pure, short-term price dynamics.
• Captures volatility using the most recent 20 bars.
### 2.2 Blended SD: Current + 3 Past Periods
This method fuses current month data with the last three complete months.
pseudocode
// -- MULTI-PERIOD STANDARD DEVIATION (PROXY) with Three Past Periods --
current_days = BarsSince("start_of_month")
current_SD = STDDEV(Close, current_days)
prev1_days = TradingDaysLastMonth
prev1_SD = STDDEV_LastMonth(Close)
prev2_days = TradingDaysTwoMonthsAgo
prev2_SD = STDDEV_TwoMonthsAgo(Close)
prev3_days = TradingDaysThreeMonthsAgo
prev3_SD = STDDEV_ThreeMonthsAgo(Close)
// Blending with Proportional Weights
Weighted_SD = (current_SD * current_days +
prev1_SD * prev1_days +
prev2_SD * prev2_days +
prev3_SD * prev3_days) /
(current_days + prev1_days + prev2_days + prev3_days)
• Merges evolving volatility with the stability of three prior months.
• Weights each period by its trading days.
• Yields a robust normalization benchmark.
### 2.3 Blended SD: Current + 1 Past Period
This variant tempers emerging volatility by blending the current month with last month only.
pseudocode
// -- MULTI-PERIOD STANDARD DEVIATION (PROXY) with One Past Period --
current_days = BarsSince("start_of_month")
current_SD = STDDEV(Close, current_days)
prev1_days = TradingDaysLastMonth
prev1_SD = STDDEV_LastMonth(Close)
// Proportional Blend
Weighted_SD = (current_SD * current_days +
prev1_SD * prev1_days) /
(current_days + prev1_days)
• Anchors current volatility to last month’s baseline.
• Softens spikes by blending with historical data.
Conclusion
Segmented weighted-average volatility transforms global benchmarking by integrating immediate market dynamics with historical context. This fixed-point approach—applicable to SD, MAD, and ATR (scaled)—delivers time-sensitive analysis.