OPEN-SOURCE SCRIPT

Forecasting - Locally Weighted Regression

This is a continuation of the series on forecasting techniques.
Locally weighted linear regression is a non-parametric algorithm, that is, the model does not learn a fixed set of parameters as is done in ordinary linear regression. Rather parameters Θ (theta) are computed individually for each query point x. While computing Θ, a higher “preference” is given to the points in the training set lying in the vicinity of x than the points lying far away from x.
For a detailed discussion see geeksforgeeks.org/ml-locally-weighted-linear-regression/
and for the formula see fawda123.github.io/swmp_workshop_2016/training_modules/module2_wrtds/wrtds.pdf.

Here you can see a shortcut application of this technique to time series with results unexpectedly favorable for price data labelling.

Good at detecting pullbacks. Can be incorporated into a trading system as a signal generator. Alerting is included.
locallyTrend AnalysisVolatilityweighted

Açık kaynak kodlu komut dosyası

Gerçek TradingView ruhuna uygun olarak, bu komut dosyasının yazarı komut dosyasını açık kaynak olarak yayınlamıştır, böylece yatırımcılar betiği anlayabilir ve doğrulayabilir. Yazar çok yaşa! Ücretsiz olarak kullanabilirsiniz, ancak bu kodun yayında yeniden kullanımı Ev kurallarına tabidir. Bir grafikte kullanmak için favorilere ekleyebilirsiniz.

Bu komut dosyasını bir grafikte kullanmak ister misiniz?

Feragatname