PINE LIBRARY

Feature Scaling

Güncellendi
Library "Feature_Scaling"
FS: This library helps you scale your data to certain ranges or standarize, normalize, unit scale or min-max scale your data in your prefered way. Mostly used for normalization purposes.

minmaxscale(source, min, max, length)
  minmaxscale: Min-max normalization scales your data to set minimum and maximum range
  Parameters:
    source
    min
    max
    length
  Returns: res: Data scaled to the set minimum and maximum range

meanscale(source, length)
  meanscale: Mean normalization of your data
  Parameters:
    source
    length
  Returns: res: Mean normalization result of the source

standarize(source, length, biased)
  standarize: Standarization of your data
  Parameters:
    source
    length
    biased
  Returns: res: Standarized data

unitlength(source, length)
  unitlength: Scales your data into overall unit length
  Parameters:
    source
    length
  Returns: res: Your data scaled to the unit length
Sürüm Notları
v2

Updated: Fixed Descriptions
minmaxscale(source, min, max, length)
  minmaxscale Min-max normalization scales your data to set minimum and maximum range
  Parameters:
    source: Source data you want to use
    min: Minimum value you want
    max: Maximum value you want
    length: Length of the data you want taken into account
  Returns: res Data scaled to the set minimum and maximum range

meanscale(source, length)
  meanscale Mean normalization of your data
  Parameters:
    source: Source data you want to use
    length: Length of the data you want taken into account
  Returns: res Mean normalization result of the source

standarize(source, length, biased)
  standarize Standarization of your data
  Parameters:
    source: Source data you want to use
    length: Length of the data you want taken into account
    biased: Whether to do biased calculation while taking standard deviation, default is true
  Returns: res Standarized data

unitlength(source, length)
  unitlength Scales your data into overall unit length
  Parameters:
    source: Source data you want to use
    length: Length of the data you want taken into account
  Returns: res Your data scaled to the unit length
MATHnormalizationnormalizescalescalingstatistics

Pine kitaplığı

Gerçek TradingView ruhuyla, yazar bu Pine kodunu açık kaynaklı bir kütüphane olarak yayınladı, böylece topluluğumuzdaki diğer Pine programcıları onu yeniden kullanabilir. Yazar çok yaşa! Bu kütüphaneyi özel olarak veya diğer açık kaynaklı yayınlarda kullanabilirsiniz, ancak bu kodun bir yayında yeniden kullanılması Ev kuralları tarafından yönetilir.


One does not simply win every trade.
Aynı zamanda::

Feragatname