PINE LIBRARY
Güncellendi

MLExtensions_Core

122
Library "MLExtensions_Core"
A set of extension methods for a novel implementation of a Approximate Nearest Neighbors (ANN) algorithm in Lorentzian space, focused on computation.

normalizeDeriv(src, quadraticMeanLength)
  Returns the smoothed hyperbolic tangent of the input series.
  Parameters:
    src (float): <series float> The input series (i.e., the first-order derivative for price).
    quadraticMeanLength (int): <int> The length of the quadratic mean (RMS).
  Returns: nDeriv <series float> The normalized derivative of the input series.

normalize(src, min, max)
  Rescales a source value with an unbounded range to a target range.
  Parameters:
    src (float): <series float> The input series
    min (float): <float> The minimum value of the unbounded range
    max (float): <float> The maximum value of the unbounded range
  Returns: <series float> The normalized series

rescale(src, oldMin, oldMax, newMin, newMax)
  Rescales a source value with a bounded range to anther bounded range
  Parameters:
    src (float): <series float> The input series
    oldMin (float): <float> The minimum value of the range to rescale from
    oldMax (float): <float> The maximum value of the range to rescale from
    newMin (float): <float> The minimum value of the range to rescale to
    newMax (float): <float> The maximum value of the range to rescale to
  Returns: <series float> The rescaled series

getColorShades(color)
  Creates an array of colors with varying shades of the input color
  Parameters:
    color (color): <color> The color to create shades of
  Returns: <array color> An array of colors with varying shades of the input color

getPredictionColor(prediction, neighborsCount, shadesArr)
  Determines the color shade based on prediction percentile
  Parameters:
    prediction (float): <float> Value of the prediction
    neighborsCount (int): <int> The number of neighbors used in a nearest neighbors classification
    shadesArr (array<color>): <array color> An array of colors with varying shades of the input color
  Returns: shade <color> Color shade based on prediction percentile

color_green(prediction)
  Assigns varying shades of the color green based on the KNN classification
  Parameters:
    prediction (float): Value (int|float) of the prediction
  Returns: color <color>

color_red(prediction)
  Assigns varying shades of the color red based on the KNN classification
  Parameters:
    prediction (float): Value of the prediction
  Returns: color

tanh(src)
  Returns the the hyperbolic tangent of the input series. The sigmoid-like hyperbolic tangent function is used to compress the input to a value between -1 and 1.
  Parameters:
    src (float): <series float> The input series (i.e., the normalized derivative).
  Returns: tanh <series float> The hyperbolic tangent of the input series.

dualPoleFilter(src, lookback)
  Returns the smoothed hyperbolic tangent of the input series.
  Parameters:
    src (float): <series float> The input series (i.e., the hyperbolic tangent).
    lookback (int): <int> The lookback window for the smoothing.
  Returns: filter <series float> The smoothed hyperbolic tangent of the input series.

tanhTransform(src, smoothingFrequency, quadraticMeanLength)
  Returns the tanh transform of the input series.
  Parameters:
    src (float): <series float> The input series (i.e., the result of the tanh calculation).
    smoothingFrequency (int)
    quadraticMeanLength (int)
  Returns: signal <series float> The smoothed hyperbolic tangent transform of the input series.

n_rsi(src, n1, n2)
  Returns the normalized RSI ideal for use in ML algorithms.
  Parameters:
    src (float): <series float> The input series (i.e., the result of the RSI calculation).
    n1 (simple int): <int> The length of the RSI.
    n2 (simple int): <int> The smoothing length of the RSI.
  Returns: signal <series float> The normalized RSI.

n_cci(src, n1, n2)
  Returns the normalized CCI ideal for use in ML algorithms.
  Parameters:
    src (float): <series float> The input series (i.e., the result of the CCI calculation).
    n1 (simple int): <int> The length of the CCI.
    n2 (simple int): <int> The smoothing length of the CCI.
  Returns: signal <series float> The normalized CCI.

n_wt(src, n1, n2)
  Returns the normalized WaveTrend Classic series ideal for use in ML algorithms.
  Parameters:
    src (float): <series float> The input series (i.e., the result of the WaveTrend Classic calculation).
    n1 (simple int)
    n2 (simple int)
  Returns: signal <series float> The normalized WaveTrend Classic series.

n_adx(highSrc, lowSrc, closeSrc, n1)
  Returns the normalized ADX ideal for use in ML algorithms.
  Parameters:
    highSrc (float): <series float> The input series for the high price.
    lowSrc (float): <series float> The input series for the low price.
    closeSrc (float): <series float> The input series for the close price.
    n1 (simple int): <int> The length of the ADX.

regime_filter(src, threshold, useRegimeFilter)
  Parameters:
    src (float)
    threshold (float)
    useRegimeFilter (bool)

filter_adx(src, length, adxThreshold, useAdxFilter)
  filter_adx
  Parameters:
    src (float): <series float> The source series.
    length (simple int): <int> The length of the ADX.
    adxThreshold (int): <int> The ADX threshold.
    useAdxFilter (bool): <bool> Whether to use the ADX filter.
  Returns: <series float> The ADX.

filter_volatility(minLength, maxLength, sensitivityMultiplier, useVolatilityFilter)
  filter_volatility
  Parameters:
    minLength (simple int): <int> The minimum length of the ATR.
    maxLength (simple int): <int> The maximum length of the ATR.
    sensitivityMultiplier (float): <float> Multiplier for the historical ATR to control sensitivity.
    useVolatilityFilter (bool): <bool> Whether to use the volatility filter.
  Returns: <bool> Boolean indicating whether or not to let the signal pass through the filter.
Sürüm Notları
v2

Added:
norm(src)
  Normalizes a value if mean is 0
This function does not access global variables.
  Parameters:
    src (float): <series float> The input series to normalize.
  Returns: <series float> The normalized series.

Feragatname

Bilgiler ve yayınlar, TradingView tarafından sağlanan veya onaylanan finansal, yatırım, işlem veya diğer türden tavsiye veya tavsiyeler anlamına gelmez ve teşkil etmez. Kullanım Şartları'nda daha fazlasını okuyun.