OPEN-SOURCE SCRIPT

AI Buy/Sell SIgnals by price prediction

//version=5

indicator("AI Buy/Sell SIgnals by price prediction", overlay=true)

learning_times = input.int(200, "Learning times")

ema_length = input.int(1, "EMA length")

learn_filter_length = input.int(5, "SMA Filter length")

learning_block = input.bool(title="Filter Learning data", defval=true)

reaction = input.int(1, "Reaction (1-3)")

a = close



var input_list = array.new_float(100)

var weights = array.new_float(100)

var outt = array.new_float(2)



//def info table

var tab = label.new(bar_index, high, ".", style=label.style_label_left, color=color.white)

infotable = table.new(position=position.top_right, columns=3, rows=3, bgcolor=color.new(color.white, 0))

label.delete(tab)



get_errg(input_array, weights_array, len_of_both) =>

out = 0

for x = 0 to len_of_both

out += int(array.get(weights_array, x) * array.get(input_array, x))

out



//getting inputs

array.set(input_list, 0, ta.valuewhen(bar_index, close, 10))

array.set(input_list, 1, ta.valuewhen(bar_index, close, 20))

array.set(input_list, 2, ta.valuewhen(bar_index, close, 30))

array.set(input_list, 3, ta.valuewhen(bar_index, close, 40))

array.set(input_list, 4, ta.valuewhen(bar_index, close, 50))

array.set(input_list, 5, ta.valuewhen(bar_index, close, 60))

array.set(input_list, 6, ta.valuewhen(bar_index, close, 70))

array.set(input_list, 7, ta.valuewhen(bar_index, close, 80))

array.set(input_list, 8, ta.valuewhen(bar_index, close, 90))

array.set(input_list, 9, ta.valuewhen(bar_index, close, 100))

array.set(input_list, 10, ta.valuewhen(bar_index, open, 10))

array.set(input_list, 11, ta.valuewhen(bar_index, open, 20))

array.set(input_list, 12, ta.valuewhen(bar_index, open, 30))

array.set(input_list, 13, ta.valuewhen(bar_index, open, 40))

array.set(input_list, 14, ta.valuewhen(bar_index, open, 50))

array.set(input_list, 15, ta.valuewhen(bar_index, open, 60))

array.set(input_list, 16, ta.valuewhen(bar_index, open, 70))

array.set(input_list, 17, ta.valuewhen(bar_index, open, 80))

array.set(input_list, 18, ta.valuewhen(bar_index, open, 90))

array.set(input_list, 19, ta.valuewhen(bar_index, open, 100))



// teaching neural network

sma = ta.sma(ta.ema(close, 10), learn_filter_length)

if math.abs(ta.valuewhen(bar_index, sma, 1) - sma) > close / 10000 or not learning_block

for rn = 0 to learning_times

for list_number = 0 to 19

if rn == 0

array.set(weights, list_number, 1) // Initialisiere die Gewichte mit 1

else

target_output = close[50]

current_output = get_errg(input_list, weights, 19)

current_input = array.get(input_list, list_number)

target_input = target_output / current_output * current_input // Berechne die entsprechende Eingabe für das Gewicht

array.set(weights, list_number, target_input)



// getting new output

array.set(outt, 0, get_errg(input_list, weights, 19))



var col = #ff1100

var table_i_col = ''

var pcol = #ff1100



// getting signals

if ta.ema(ta.valuewhen(bar_index, array.get(outt, 0), 1), ema_length) < ta.sma(ta.ema(array.get(outt, 0), ema_length), 10)

col := #39ff14

table_i_col := 'AI Up'

if ta.ema(ta.valuewhen(bar_index, array.get(outt, 0), 1), ema_length) > ta.sma(ta.ema(array.get(outt, 0), ema_length), 10)

col := #ff1100

table_i_col := 'AI down'



if ta.valuewhen(bar_index, col, 50) == col and ta.valuewhen(bar_index, col, 10) == ta.valuewhen(bar_index, col, 20) and ta.valuewhen(bar_index, col, 30) == ta.valuewhen(bar_index, col, 40) and reaction == 1

pcol := col



if ta.valuewhen(bar_index, col, 50) == col and ta.valuewhen(bar_index, col, 10) == ta.valuewhen(bar_index, col, 20) and reaction == 2

pcol := col



if ta.valuewhen(bar_index, col, 50) == col and reaction == 3

pcol := col



// plotting all info

plot(0, "plot2", col, offset=50)

plot(ta.sma(ta.ema(close, 10), 10), color=ta.valuewhen(bar_index, pcol, 50), linewidth=2)



table.cell(infotable, 0, 0, str.tostring(float(array.get(outt, 0))))

table.cell(infotable, 0, 1, str.tostring(float(ta.valuewhen(bar_index, array.get(outt, 0), 50))))

table.cell(infotable, 0, 2, str.tostring(table_i_col))
Breadth IndicatorsCandlestick analysisMoving Averages

Açık kaynak kodlu komut dosyası

Gerçek TradingView ruhuna uygun olarak, bu komut dosyasının yazarı komut dosyasını açık kaynak olarak yayınlamıştır, böylece yatırımcılar betiği anlayabilir ve doğrulayabilir. Yazar çok yaşa! Ücretsiz olarak kullanabilirsiniz, ancak bu kodun yayında yeniden kullanımı Ev kurallarına tabidir. Bir grafikte kullanmak için favorilere ekleyebilirsiniz.

Bu komut dosyasını bir grafikte kullanmak ister misiniz?

Feragatname