OPEN-SOURCE SCRIPT
チャットGPT

import yfinance as yf
import pandas as pd
import requests
from bs4 import BeautifulSoup
# 株たんのスクリーニング結果URL(例:200日線以下)
url = "kabutan.jp/warning/?mode=3_1"
r = requests.get(url)
soup = BeautifulSoup(r.text, "html.parser")
# 銘柄コードと企業名を抽出
stocks = []
for link in soup.select("td a[href*='/stock/?code=']"):
code = link['href'].split('=')[-1]
name = link.text.strip()
if code.isdigit():
stocks.append({"code": code, "name": name})
results = []
for stock in stocks[:10]: # ←テスト用に10銘柄まで
ticker = f"{stock['code']}.T"
df = yf.download(ticker, period="1y", interval="1d")
# EMA200
df["EMA200"] = df["Close"].ewm(span=200, adjust=False).mean()
below_ema200 = df["Close"].iloc[-1] < df["EMA200"].iloc[-1]
# 株たんの個別ページからPER・成長率を取得
stock_url = f"kabutan.jp/stock/?code={stock['code']}"
res = requests.get(stock_url)
s = BeautifulSoup(res.text, "html.parser")
try:
per = s.find(text="PER").find_next("td").text
growth = s.find(text="売上高増減率").find_next("td").text
except:
per, growth = "N/A", "N/A"
results.append({
"銘柄コード": stock['code'],
"企業名": stock['name'],
"200EMA以下": below_ema200,
"PER": per,
"売上成長率": growth
})
# 結果をCSV出力
df_result = pd.DataFrame(results)
df_result.to_csv("割安EMA200以下銘柄.csv", index=False, encoding="utf-8-sig")
print(df_result)
import pandas as pd
import requests
from bs4 import BeautifulSoup
# 株たんのスクリーニング結果URL(例:200日線以下)
url = "kabutan.jp/warning/?mode=3_1"
r = requests.get(url)
soup = BeautifulSoup(r.text, "html.parser")
# 銘柄コードと企業名を抽出
stocks = []
for link in soup.select("td a[href*='/stock/?code=']"):
code = link['href'].split('=')[-1]
name = link.text.strip()
if code.isdigit():
stocks.append({"code": code, "name": name})
results = []
for stock in stocks[:10]: # ←テスト用に10銘柄まで
ticker = f"{stock['code']}.T"
df = yf.download(ticker, period="1y", interval="1d")
# EMA200
df["EMA200"] = df["Close"].ewm(span=200, adjust=False).mean()
below_ema200 = df["Close"].iloc[-1] < df["EMA200"].iloc[-1]
# 株たんの個別ページからPER・成長率を取得
stock_url = f"kabutan.jp/stock/?code={stock['code']}"
res = requests.get(stock_url)
s = BeautifulSoup(res.text, "html.parser")
try:
per = s.find(text="PER").find_next("td").text
growth = s.find(text="売上高増減率").find_next("td").text
except:
per, growth = "N/A", "N/A"
results.append({
"銘柄コード": stock['code'],
"企業名": stock['name'],
"200EMA以下": below_ema200,
"PER": per,
"売上成長率": growth
})
# 結果をCSV出力
df_result = pd.DataFrame(results)
df_result.to_csv("割安EMA200以下銘柄.csv", index=False, encoding="utf-8-sig")
print(df_result)
Açık kaynak kodlu komut dosyası
Gerçek TradingView ruhuna uygun olarak, bu komut dosyasının oluşturucusu bunu açık kaynaklı hale getirmiştir, böylece yatırımcılar betiğin işlevselliğini inceleyip doğrulayabilir. Yazara saygı! Ücretsiz olarak kullanabilirsiniz, ancak kodu yeniden yayınlamanın Site Kurallarımıza tabi olduğunu unutmayın.
Feragatname
Bilgiler ve yayınlar, TradingView tarafından sağlanan veya onaylanan finansal, yatırım, işlem veya diğer türden tavsiye veya tavsiyeler anlamına gelmez ve teşkil etmez. Kullanım Şartları'nda daha fazlasını okuyun.
Açık kaynak kodlu komut dosyası
Gerçek TradingView ruhuna uygun olarak, bu komut dosyasının oluşturucusu bunu açık kaynaklı hale getirmiştir, böylece yatırımcılar betiğin işlevselliğini inceleyip doğrulayabilir. Yazara saygı! Ücretsiz olarak kullanabilirsiniz, ancak kodu yeniden yayınlamanın Site Kurallarımıza tabi olduğunu unutmayın.
Feragatname
Bilgiler ve yayınlar, TradingView tarafından sağlanan veya onaylanan finansal, yatırım, işlem veya diğer türden tavsiye veya tavsiyeler anlamına gelmez ve teşkil etmez. Kullanım Şartları'nda daha fazlasını okuyun.
