PINE LIBRARY
Güncellendi

StatMetrics

91
Library "StatMetrics"
A utility library for common statistical indicators and ratios used in technical analysis.
Includes Z-Score, correlation, PLF, SRI, Sharpe, Sortino, Omega ratios, and normalization tools.

zscore(src, len)
  Calculates the Z-score of a series
  Parameters:
    src (float): The input price or series (e.g., close)
    len (simple int): The lookback period for mean and standard deviation
  Returns: Z-score: number of standard deviations the input is from the mean

corr(x, y, len)
  Computes Pearson correlation coefficient between two series
  Parameters:
    x (float): First series
    y (float): Second series
    len (simple int): Lookback period
  Returns: Correlation coefficient between -1 and 1

plf(src, longLen, shortLen, smoothLen)
  Calculates the Price Lag Factor (PLF) as the difference between long and short Z-scores, normalized and smoothed
  Parameters:
    src (float): Source series (e.g., close)
    longLen (simple int): Long Z-score period
    shortLen (simple int): Short Z-score period
    smoothLen (simple int): Hull MA smoothing length
  Returns: Smoothed and normalized PLF oscillator

sri(signal, len)
  Computes the Statistical Reliability Index (SRI) based on trend persistence
  Parameters:
    signal (float): A price or signal series (e.g., smoothed PLF)
    len (simple int): Lookback period for smoothing and deviation
  Returns: Normalized trend reliability score

sharpe(src, len)
  Calculates the Sharpe Ratio over a period
  Parameters:
    src (float): Price series (e.g., close)
    len (simple int): Lookback period
  Returns: Sharpe ratio value

sortino(src, len)
  Calculates the Sortino Ratio over a period, using only downside volatility
  Parameters:
    src (float): Price series
    len (simple int): Lookback period
  Returns: Sortino ratio value

omega(src, len)
  Calculates the Omega Ratio as the ratio of upside to downside return area
  Parameters:
    src (float): Price series
    len (simple int): Lookback period
  Returns: Omega ratio value

beta(asset, benchmark, len)
  Calculates beta coefficient of asset vs benchmark using rolling covariance
  Parameters:
    asset (float): Series of the asset (e.g., close)
    benchmark (float): Series of the benchmark (e.g., SPX close)
    len (simple int): Lookback window
  Returns: Beta value (slope of linear regression)

alpha(asset, benchmark, len)
  Calculates rolling alpha of an asset relative to a benchmark
  Parameters:
    asset (float): Series of the asset (e.g., close)
    benchmark (float): Series of the benchmark (e.g., SPX close)
    len (simple int): Lookback window
  Returns: Alpha value (excess return not explained by Beta exposure)

skew(x, len)
  Computes skewness of a return series
  Parameters:
    x (float): Input series (e.g., returns)
    len (simple int): Lookback period
  Returns: Skewness value

kurtosis(x, len)
  Computes kurtosis of a return series
  Parameters:
    x (float): Input series (e.g., returns)
    len (simple int): Lookback period
  Returns: Kurtosis value

cv(x, len)
  Calculates Coefficient of Variation
  Parameters:
    x (float): Input series (e.g., returns or prices)
    len (simple int): Lookback period
  Returns: CV value

autocorr(x, len)
  Calculates autocorrelation with 1-lag
  Parameters:
    x (float): Series to test
    len (simple int): Lookback window
  Returns: Autocorrelation at lag 1

stderr(x, len)
  Calculates rolling standard error of a series
  Parameters:
    x (float): Input series
    len (simple int): Lookback window
  Returns: Standard error (std dev / sqrt(n))

info_ratio(asset, benchmark, len)
  Calculates the Information Ratio
  Parameters:
    asset (float): Asset price series
    benchmark (float): Benchmark price series
    len (simple int): Lookback period
  Returns: Information ratio (alpha / tracking error)

tracking_error(asset, benchmark, len)
  Measures deviation from benchmark (Tracking Error)
  Parameters:
    asset (float): Asset return series
    benchmark (float): Benchmark return series
    len (simple int): Lookback window
  Returns: Tracking error value

max_drawdown(x, len)
  Computes maximum drawdown over a rolling window
  Parameters:
    x (float): Price series
    len (simple int): Lookback window
  Returns: Rolling max drawdown percentage (as a negative value)

zscore_signal(z, ob, os)
  Converts Z-score into a 3-level signal
  Parameters:
    z (float): Z-score series
    ob (float): Overbought threshold
    os (float): Oversold threshold
  Returns: -1, 0, or 1 depending on signal state

r_squared(x, y, len)
  Calculates rolling R-squared (coefficient of determination)
  Parameters:
    x (float): Asset returns
    y (float): Benchmark returns
    len (simple int): Lookback window
  Returns: R-squared value (0 to 1)

entropy(x, len)
  Approximates Shannon entropy using log returns
  Parameters:
    x (float): Price series
    len (simple int): Lookback period
  Returns: Approximate entropy

zreversal(z)
  Detects Z-score reversals to the mean
  Parameters:
    z (float): Z-score series
  Returns: +1 on upward reversal, -1 on downward

momentum_rank(x, len)
  Calculates relative momentum strength
  Parameters:
    x (float): Price series
    len (simple int): Lookback window
  Returns: Proportion of lookback where current price is higher

normalize(x, len)
  Normalizes a series to a 0–1 range over a period
  Parameters:
    x (float): The input series
    len (simple int): Lookback period
  Returns: Normalized value between 0 and 1

composite_score(score1, score2, score3)
  Combines multiple normalized scores into a composite score
  Parameters:
    score1 (float)
    score2 (float)
    score3 (float)
  Returns: Average composite score
Sürüm Notları
v2

Added:
hurst(x, len)
  Estimates the Hurst Exponent (simplified)
  Parameters:
    x (float): Price or return series
    len (simple int): Lookback window
  Returns: Hurst exponent approximation

mad(x, len)
  Computes Mean Absolute Deviation
  Parameters:
    x (float): Input series (e.g., price or return)
    len (simple int): Lookback period
  Returns: MAD value

cdf_score(x, len)
  Approximates quantile rank of the current value in history
  Parameters:
    x (float): Input series
    len (simple int): Lookback window
  Returns: CDF-like score between 0 and 1

cvar(x, len, alpha)
  Approximates Conditional Value at Risk (CVaR)
  Parameters:
    x (float): Return series
    len (simple int): Lookback period
    alpha (float): Tail percentile (e.g., 0.05 for 5% worst-case)
  Returns: CVaR value (average of worst returns)

seasonality_index(x, period)
  Computes a basic seasonality index
  Parameters:
    x (float): Return series
    period (simple int): Seasonal period (e.g., 24 for hourly, 7 for daily)
  Returns: Value indicating typical seasonal effect

Feragatname

Bilgiler ve yayınlar, TradingView tarafından sağlanan veya onaylanan finansal, yatırım, işlem veya diğer türden tavsiye veya tavsiyeler anlamına gelmez ve teşkil etmez. Kullanım Şartları'nda daha fazlasını okuyun.