PROTECTED SOURCE SCRIPT
QUANTA - LAB GARCH

Institutional volatility modeling suite with GARCH estimation, VaR/CVaR risk metrics, and Basel III backtesting.
Models Available:
GARCH(1,1) — symmetric volatility clustering
GJR-GARCH(1,1) — asymmetric leverage effect
EGARCH(1,1) — log-variance specification
Risk Metrics:
VaR (95%/99%) with Student-t fat tails
CVaR/Expected Shortfall (coherent risk measure)
Multi-horizon VaR (1d, 5d, 10d) with persistence-adjusted scaling
DoF estimation via method of moments (±15-25% uncertainty)
Backtesting (Basel III Compliant):
Kupiec unconditional coverage test
Christoffersen independence test
Traffic light system (Green/Yellow/Red zones)
Diagnostics:
ARCH-LM test for residual effects
AIC/BIC information criteria
Structural break detection (CUSUM-based)
Jump/outlier detection
Model confidence score (0-100)
V3.6 Improvements:
Adaptive grid search (~60% faster)
High persistence warning (p > 0.98)
Persistence-adjusted multi-horizon scaling (better than √T)
Dashboard Includes:
Real-time conditional volatility (annualized)
Parameter estimates (α, β, γ, θ)
Persistence and half-life
Regime classification (Normal/Elevated/Crisis)
Important:
Grid search produces point estimates (no confidence intervals)
Parameters may differ ±3-5% from true MLE
NOT for illiquid assets or significant overnight gaps
Screening tool only — validate with Python arch / R rugarch
References: Bollerslev (1986), Nelson (1991), GJR (1993), Engle (1982), McNeil et al. (2015), Kupiec (1995), Christoffersen (1998)
Models Available:
GARCH(1,1) — symmetric volatility clustering
GJR-GARCH(1,1) — asymmetric leverage effect
EGARCH(1,1) — log-variance specification
Risk Metrics:
VaR (95%/99%) with Student-t fat tails
CVaR/Expected Shortfall (coherent risk measure)
Multi-horizon VaR (1d, 5d, 10d) with persistence-adjusted scaling
DoF estimation via method of moments (±15-25% uncertainty)
Backtesting (Basel III Compliant):
Kupiec unconditional coverage test
Christoffersen independence test
Traffic light system (Green/Yellow/Red zones)
Diagnostics:
ARCH-LM test for residual effects
AIC/BIC information criteria
Structural break detection (CUSUM-based)
Jump/outlier detection
Model confidence score (0-100)
V3.6 Improvements:
Adaptive grid search (~60% faster)
High persistence warning (p > 0.98)
Persistence-adjusted multi-horizon scaling (better than √T)
Dashboard Includes:
Real-time conditional volatility (annualized)
Parameter estimates (α, β, γ, θ)
Persistence and half-life
Regime classification (Normal/Elevated/Crisis)
Important:
Grid search produces point estimates (no confidence intervals)
Parameters may differ ±3-5% from true MLE
NOT for illiquid assets or significant overnight gaps
Screening tool only — validate with Python arch / R rugarch
References: Bollerslev (1986), Nelson (1991), GJR (1993), Engle (1982), McNeil et al. (2015), Kupiec (1995), Christoffersen (1998)
Korumalı komut dosyası
Bu komut dosyası kapalı kaynak olarak yayınlanmaktadır. Ancak, ücretsiz ve herhangi bir sınırlama olmaksızın kullanabilirsiniz – daha fazla bilgiyi buradan edinebilirsiniz.
Institutional-grade diagnostics: GARCH, HMM Regimes, Cointegration, Microstructure, Fractal Analysis | Research only
Feragatname
Bilgiler ve yayınlar, TradingView tarafından sağlanan veya onaylanan finansal, yatırım, alım satım veya diğer türden tavsiye veya öneriler anlamına gelmez ve teşkil etmez. Kullanım Koşulları bölümünde daha fazlasını okuyun.
Korumalı komut dosyası
Bu komut dosyası kapalı kaynak olarak yayınlanmaktadır. Ancak, ücretsiz ve herhangi bir sınırlama olmaksızın kullanabilirsiniz – daha fazla bilgiyi buradan edinebilirsiniz.
Institutional-grade diagnostics: GARCH, HMM Regimes, Cointegration, Microstructure, Fractal Analysis | Research only
Feragatname
Bilgiler ve yayınlar, TradingView tarafından sağlanan veya onaylanan finansal, yatırım, alım satım veya diğer türden tavsiye veya öneriler anlamına gelmez ve teşkil etmez. Kullanım Koşulları bölümünde daha fazlasını okuyun.